Isolation of a mammalian homologue of a fission yeast differentiation regulator.

نویسندگان

  • H Yamamoto
  • K Tsukahara
  • Y Kanaoka
  • S Jinno
  • H Okayama
چکیده

In the fission yeast Schizosaccharomyces pombe the nrd1(+) gene encoding an RNA binding protein negatively regulates the onset of differentiation. Its biological role is to block differentiation by repressing a subset of the Ste11-regulated genes essential for conjugation and meiosis until the cells reach a critical level of nutrient starvation. By using the phenotypic suppression of the S. pombe temperature-sensitive pat1 mutant that commits lethal haploid meiosis at the restrictive temperature, we have cloned ROD1, a functional homologue of nrd1(+), from rat and human cDNA libraries. Like nrd1(+), ROD1 encodes a protein with four repeats of typical RNA binding domains, though its amino acid homology to Nrd1 is limited. When expressed in the fission yeast, ROD1 behaves in a way that is functionally similar to nrd1(+), being able to repress Ste11-regulated genes and to inhibit conjugation upon overexpression. ROD1 is predominantly expressed in hematopoietic cells or organs of adult and embryonic rat. Like nrd1(+) for fission yeast differentiation, overexpressed ROD1 effectively blocks both 12-O-tetradecanoyl phorbol-13-acetate-induced megakaryocytic and sodium butyrate-induced erythroid differentiation of the K562 human leukemia cells without affecting their proliferative ability. These results suggest a role for ROD1 in differentiation control in mammalian cells. We discuss the possibility that a differentiation control system found in the fission yeast might well be conserved in more complex organisms, including mammals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cpc2, a fission yeast homologue of mammalian RACK1 protein, interacts with Ran1 (Pat1) kinase To regulate cell cycle progression and meiotic development.

The Schizosaccharomyces pombe ran1/pat1 gene regulates the transition between mitosis and meiosis. Inactivation of Ran1 (Pat1) kinase is necessary and sufficient for cells to exit the cell cycle and undergo meiosis. The yeast two-hybrid interaction trap was used to identify protein partners for Ran1/Pat1. Here we report the identification of one of these, Cpc2. Cpc2 encodes a homologue of RACK1...

متن کامل

The mammalian Rad24 homologous to yeast Saccharomyces cerevisiae Rad24 and Schizosaccharomyces pombe Rad17 is involved in DNA damage checkpoint.

Cell cycle checkpoint proteins play critical roles in maintaining genomic stability and integrity to prevent the development of cancer and hereditary diseases. Here we report the isolation of a novel mouse gene encoding the protein MmRad24 [MmRad24 is the mouse homologue of HRad17, which was described recently by A. E. Parker et al. (J. Biol. Chem., 273: 18340-18346, 1998)], which shares signif...

متن کامل

Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue.

The prp4 gene of Schizosaccharomyces pombe encodes a protein kinase. A physiological substrate is not yet known. A mutational analysis of prp4 revealed that the protein consists of a short N-terminal domain, containing several essential motifs, which is followed by the kinase catalytic domain comprising the C-terminus of the protein. Overexpression of N-terminal mutations disturbs mitosis and p...

متن کامل

The Win1 mitotic regulator is a component of the fission yeast stress-activated Sty1 MAPK pathway.

The fission yeast Sty1 mitogen-activated protein (MAP) kinase (MAPK) and its activator the Wis1 MAP kinase kinase (MAPKK) are required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAPKs, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, UV light, me...

متن کامل

Isolated mammalian and Schizosaccharomyces pombe ran-binding domains rescue S. pombe sbp1 (RanBP1) genomic mutants.

Mammalian Ran-binding protein-1 (RanBP1) and its fission yeast homologue, sbp1p, are cytosolic proteins that interact with the GTP-charged form of Ran GTPase through a conserved Ran-binding domain (RBD). In vitro, this interaction can accelerate the Ran GTPase-activating protein-mediated hydrolysis of GTP on Ran and the turnover of nuclear import and export complexes. To analyze RanBP1 function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 1999